
International Journal of Theoretical Physics, Vol. 37, No. 7, 1998

Chiral Actions and Einstein’s Vacuum Equations

D. C. Robinson1
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The Euler±Lagrange equations of recently introduced chiral action principles are
discussed using Lie algebra-valued differential forms. Symmetries of the equations
and the chiral description of Einstein’ s vacuum equations are presented. A class
of Lagrangians which contains the chiral formulations is exhibited.

1. INTRODUCTION

Recently a complex chiral action was presented in which the field

variables are an sl(2, C )-valued connection 1-form, two (2-component) spinor-

valued 1-forms, and two spinor-valued 2-forms (Robinson, 1996). When the

1-forms are linearly independent the classical theory so defined corresponds

to vacuum general relativity in four dimensions. The 1-forms define a (com-
plex) 4-metric and the field equations imply that the sl(2, C ) connection 1-

form is the anti-self-dual (Levi-Civita) spin connection. The Ricci tensor of

this connection is zero. Real general relativity can be recovered from the

complex theory by the imposition of reality conditions. When the 1-forms

are not linearly independent the field equations define a generalization of
Einstein’ s vacuum field equations which is determined by a degenerate 4-

metric and a connection. Degenerate metrics have been of recent interest in

quantum gravity.

Since the spinor-valued 1-forms define spin-3/2 fields, an alternative

approach to the formalism is to treat them as Grassman-valued (anticommut-

ing) fields as in supergravity. Aspects of this latter approach are contained
in earlier work (Bars and MacDowell, 1977, 1979), where the pair of 1-

forms are determined by an anticommuting Majorana spin-3/2 field.
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The principal aim of this paper is to investigate the Lie algebras related

to the Euler±Lagrange equations of the complex chiral action and the related

action of Tung and Jacobson (1995; Tung, 1996). In these Lagrangian formula-
tions the spinor-valued forms and the connection 1-form are treated as classical

(c-number) fields. They are regarded as the primary field variables rather

than the metrics which can exist as secondary, composite objects. Investigation

of the related Lie algebras shows that these formalisms can be viewed as

belonging to a wider class of Lagrangian field theories. Members of this

class are distinguished from one another by their gauge groups.
In Section 2 the chiral Lagrangian formalism is briefly reviewed and

the case where a regular 4-metric is defined is briefly discussed. Two standard

formulations of Cartan’ s structure equations are recalled in Section 3, first

in terms of differential forms which take their values in the Lie algebra of

g, the (affine) group of motions of a (pseudo-) Riemannian metric in n
dimensions, and second in terms of two-component spinors in four dimen-
sions. These formulations provide the background for the following discussion

of the chiral Lagrangians and field equations. The Lie algebras naturally

associated with the latter are identified and it is shown that the field equations

can be expressed as one simple equation for Lie algebra-valued forms. In

Section 4 it is demonstrated that these results can be extended naturally to
Lagrangian field theories with other gauge groups. In Section 5, certain

Lagrangians with two connections as field variables are considered and shown

to be equivalent to the (generalized) Tung±Jacobson Lagrangians. Finally a

chiral four-spinor notation is introduced and used to describe Lagrangian

formulations of Einstein’ s vacuum equations.

Lowercase Latin indices label Lie algebra generators and differential
forms. Uppercase Latin indices range and sum over 0 and 1, and standard

two-component spinor conventions are followed. Spinor indices are raised

and lowered with the constant symplectic spinors e AB and e AB (Penrose and

Rindler, 1984).

2. THE CHIRAL LAGRANGIANS AND FIELD EQUATIONS

The Lagrangian 4-form, (Robinson, 1996) is

L 5 n A Ù D a A 1 D b A Ù m A 2 n A Ù m A (1)

where a A and b A are spinor-valued 1-forms, m A and n A are spinor-valued 2-

forms, and D is the covariant exterior derivative of an sl(2, C )-valued connec-

tion 1-form G A
B. The Euler±Lagrange equations corresponding to variations
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with respect to the 2-forms n A and m A , the 1-forms a A and b A , and the

connection G A
B are

D a A 2 m A 5 0, D b A 1 n A 5 0 (2)

D n A 5 0, D m A 5 0 (3)

and

n (A Ù a B) 1 b (A Ù m B) 5 0 (4)

The Lagrangian of Tung and Jacobson (1995),

L1 5 D b A Ù D a A (5)

is obtained from L when equations (2) are satisfied.
When a A and b B are linearly independent (the regularity condition) they

determine the metric

ds2 5 a A ^ b A 1 b A ^ a A (6)

When a A and b A constitute a coframe, equation (4) is satisfied if and only
if there exist unique 1-forms p 1, p 2, p 3 such that

m A 5 a A Ù p 1 1 b A Ù p 2

n A 5 2 a A Ù p 3 1 b A Ù p 1 (7)

Then the remaining field equations (3) are satisfied if and only if

a A Ù D p 1 1 b A Ù D p 2 1 2 b A Ù p 1 Ù p 2 1 a A Ù p 2 Ù p 3 5 0 (8)

and

a A Ù D p 3 2 b A Ù D p 1 2 2 a A Ù p 1 Ù p 3 2 b A Ù p 2 Ù p 3 5 0 (9)

When the regularity condition is satisfied these chiral equations are a formula-

tion of Einstein’ s vacuum equations for a metric. Equations (2) and (4) imply

that G A
B is the anti-self-dual part of the Levi-Civita (spin) connection. Equations

(3) are equivalent to Einstein’ s vacuum field equations. The three 1-forms

p 1, p 2, and p 3 represent the components G A8B8 o A8 i B8, G A8B8 i A8 i B8, and

2 G A8B8 o A8 o B8 of the self-dual part of the Levi-Civita (spin) connection, and

the spinor fields

z A8 5 2 p 1 i A8 1 p 2 o A8 and j A8 5 2 p 3 i A8 2 p 1 o A8 (10)

satisfy the Rarita±Schwinger spin-3/2 zero-rest-mass field equations.

When the regularity condition is not satisfied, solutions of the field

equations may be interpreted as defining gravitational vacuum equations for

degenerate metrics. The latter are of interest in the context of quantum gravity.
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3. CARTAN’S AND EINSTEIN’S EQUATIONS AND LIE
ALGEBRAS

Einstein’ s vacuum field equations and Cartan’ s structure equations for

a metric geometry can be formulated in terms of Lie algebra-valued forms

as follows. Let u 5 u aPa and G 5 1±2 G a
b J b

a be Lie algebra-valued 1-forms,

where u a and G a
b are, respectively, the components of an orthonorma l coframe

for the metric

ds2 5 gab u a ^ u b (11)

and the components of a connection one-form. The generators of the affine

Lie algebra g satisfy the commutation relations

[Pa , Pb] 5 0; [Pa , Jbc] 5 (Pbgac 2 Pcgab)

[Jab, Jcd] 5 (gbcJda 1 gdaJcb 1 gbdJac 1 gacJbd) (12)

where Jab 5 2 Jba.

Then Cartan’ s first structure equations are

U 5 d u 1 [ u , G ] (13)

where U 5 U aPa is the torsion 2-form. Cartan’ s second structure equations are

F 5 d G 1
1

2
[ G , G ] (14)

and F 5 1±2 F a
b J b

a is the curvature 2-form.

In the special case of four-dimensional manifolds, to which henceforth

this paper will be restricted, the Einstein vacuum field equations may be
written as

U 5 0; [ u , * F ] 5 0 (15)

where * F is the left dual, 1±4 e ad
bc F c

d J b
a, of F.

When n 5 4 the Lie algebra equations (12) can be reexpressed in terms

of two-component spinors as

[PAA8, PBB8] 5 0; [PAA8, JBC] 5 2
1

2
e AC PBA8 2

1

2
e AB PCA8 (16a)

[JAB, JCD] 5
1

2
( e CB JAD 1 e DA JBC 1 e CA JDB 1 e DB JCA) (16b)

[JAB, JA8B8] 5 0 (16c)

with similar equations for [PAA8, JB8C8] and [JA8B8, JC8D8]. Here PAA8 % Pa and

d A
B J A8

B8 1 d A8
B8 J A

B % J a
b, with JAB 5 JBA and JA8B8 5 JB8A8. The spinor notation
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exhibits explicitly the so(4, C ) Lie algebra isomorphism so(4, C ) . sl(2, C )

% sl(2, C ), or, with the appropriate reality conditions, so(4, R ) . su(2) %
su(2), so(1, 3) . sl(2, C ); so(2, 2) . su(1, 1) % su(1, 1) 5 sl(2, R ) % sl(2,
R ). These isomorphisms imply that the second Cartan structure equations can

be written in terms of the self-dual and anti-self-dual parts of the connection

G
( 1 )

5 G A8
B8 J B8

A8 and G
( 2 )

5 G A
B J B

A where G 5 G
( 1 )

1 G
( 2 )

and G a
b % d A8

B8 G A
B 1

d A
B G A8

B8. Then

F
( 1 )

5 d G
( 1 )

1
1

2
[ G
( 1 )

, G
( 1 )

]; F
( 2 )

5 d G
( 2 )

1
1

2
[ G
( 2 )

, G
( 2 )

] (17)

where F 5 F
( 1 )

1 F
( 2 )

and F
( 2 )

5 F A
B J B

A, F
( 1 )

5 F A8
B8 J B8

A8.

The Einstein vacuum equations in four dimensions can now be written as

U 5 0, [ F
( 1 )

, u ] 5 0 (18)

or, alternatively,

U 5 0, [ F
( 2 )

, u ] 5 0 (19)

The chiral equations (2)±(4), are not a priori metric equations, but the relevant

Lie algebras and Lie algebra-valued 1-forms can be related to the above

equations as follows.

Let ( o A8, i A8) be a constant spin dyad with o A8 i A8 5 1. By defining the
Lie algebra generators

aA 5 PAA8 o A8, bA 5 PAA8 i A8 (20)

we can write equations (16a) as

[aA , aB] 5 0; [aA , JBC] 5 2
1

2
e ACaB 2

1

2
e ABaC (21a)

[aA , bB] 5 0 (21b)

and

[bA , bB] 5 0; [bA , JBC] 5 2
1

2
e ACbB 2

1

2
e ABbC (21c)

Equations (21) and (16b) specify a chiral representation of a semi-direct sum

of sl(2, C ) and C 4 or, when reality conditions apply, a semi-direct sum

of subalgebras.

The Euler±Lagrange equations (2)±(4) can be expressed in terms of one-
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forms with values in this (semi-direct sum) Lie algebra. Define the Lie

algebra-valued one-forms

u 5 a AaA 1 b AbA (22)

and, as before, G
( 2 )

5 G A
B J B

A. The first Cartan equation corresponding to the

chiral algebra is

U
( 2 )

5 d u 1 [ u , G
( 2 )

] (23)

and defines a complex torsionlike two-form of the connection G
( 2 )

. Direct

calculation shows that equation (23) is equivalent to equation (2) with

U
( 2 )

5 m AaA 2 n AbA (24)

If D is the covariant exterior derivative determined by G
( 2 )

, then equations (3)

and (4) are respectively equivalent to the equations

D U
( 2 )

5 d U
( 2 )

2 [ U
( 2 )

, G
( 2 )

] 5 0 (25)

and

D S
( 2 )

5 0 (26)

where

S
( 2 )

5 a B Ù b A JAB (27)

The second Cartan equations are as in equation (17). With U
( 2 )

and S
( 2 )

defined

as above, the Einstein vacuum equations given by equations (3) and (4) can

be summarized in the single concise equation

D ( U
( 2 )

1 S
( 2 )

) 5 0 (28)

When reality conditions are imposed the equations corresponding to the real

4-dimensional geometries are obtained. By introducing the conjugation

operation

aA j a
²
A 5 aB8t

B8
A ; t B8

A 5 F 0 1

2 s 0 G (29)
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and dually

a A j a ² A 5 T A
B8 a B8; T A

B8 5 F 0 2 s
1 0 G (30)

where s 5 1 1 for real geometries with Euclidean signature and s 5 2 1

for real geometries with ultrahyperbolic signature (Mason and Woodhouse,
1996), the choices

b A 5 a ² A and n A 5 2 m ² A (31)

can be made for these geometries.

Then the Lagrangian given in equation (1) becomes

L 5 2 m ²
A Ù D a A 1 D a ² A Ù m A 1 m ²

A Ù m A (32)

and the Euler±Lagrange equations reduce to the system

D a A 2 m A 5 0 (33a)

D m A 5 0 (33b)

and

2 m ² (A Ù a B) 1 a ² (A Ù m B) 5 0 (33c)

The Tung±Jacobson Lagrangian given in equation (5) reduces to L1 5 D a ² A

Ù D a A.

Now the relevant Lie algebra is the semi-direct sum of su(2) [respectively
su(1, 1)] and C 2 with commutation relations given by equations (21a) and

(16b). The corresponding Cartan equations can be expressed in terms of

G
( 2 )

and the Lie algebra-valued 1-form u
( 2 )

5 a A s A. Equation (33a) is the first

Cartan equation corresponding to this algebra, that is,

U
( 2 )

1
5 d u

( 2 )

1 [ u
( 2 )

, G
( 2 )

] (34)

with torsionlike two-form

U
( 2 )

1
5 m AaA

The Einstein vacuum equations for these geometries, equations (33b) and

(33c), can now be written as

D ( U
( 2 )

1
1 S

( 2 )

) 5 0 (35)

In the case of Lorentzian geometries the reality conditions can be imposed
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by requiring that a 0 5 a 0, b 1 5 b 1, a 1 5 b 0, a0 5 a0, b1 5 b1, a1 5 b0,

and the underlying Lie algebra is the semi-direct sum of sl(2, C ) and R 4 as

in equations (21) and (16b).
Further symmetries of the field equations (2)±(4) are given by the

transformations

a A
j p a A 1 q b A; b A

j r a A 1 s b A

m A j Dp Ù a A 1 Dq Ù b A 1 p m A 2 q n A

n A j 2 Dr Ù a A 2 Ds Ù b A 2 r m A 1 s n A (36)

where ps 2 qr is a nonzero constant k. Equation (36) is an anti-self-dual
representation of the standard self-dual sl(2, C ) (when k 5 1) gauge transfor-

mations (Tung, 1996). Under these transformations the chiral Lagrangian

given in equation (1) transforms as

L j kL 1 dE (37)

where

2E 5 (rDp 2 pDr) Ù a A Ù a A 1 (sDq 2 qDs) Ù b A Ù b A

1 (rDq 2 qDr 1 sDp 2 pDs) Ù a A Ù b A (38)

4. A LARGER CLASS OF LAGRANGIANS AND LIE ALGEBRAS

Vacuum general relativity, formulated as a Lagrangian field theory as

in the previous sections, can be regarded as one member of a class of field
theories. Members of this class differ from general relativity by having gauge

groups other than SL(2, C ). This will be illustrated here by considering

Lagrangians with gauge group &, where & is either SO(N, C ) or Sp(N, C ).

However, as is clear from the previous section, the class could be extended to

include theories with unitary and other gauge groups. Consider the Lagrangian

L2 5 n j Ù D a ihji 1 D b i Ù m jhji 2 n i Ù m jhij (39)

where a i and b i are 1-forms, n i and m i are 2-forms, all with values in (a matrix

representation of) the Lie algebra of &. The covariant exterior derivative D
corresponds to a Lie algebra-valued connection 1-form G i

j and & is the isometry

group of the (constant and covariantly constant) metric hij, so that, for all

Mi
j P &,

M i
jM

k
l hik 5 hjl (40)
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and

Dhij 5 2 hkj G k
i 2 hik G k

j 5 0 (41)

Variation of the Lagrangian L2 with respect to the field variables leads to

the equations

D a i 2 m i 5 0; D b ihji 2 n ihij 5 0, (42)

D m i 5 0; D n i 5 0 (43)

and

t ij( b i Ù m j 1 n j Ù a i) 5 0 (44)

Here t ij is an arbitrary field with the symmetries of hki d G k
j .

When equations (39) are satisfied L2 reduces to

L3 5 hijD a i Ù D b j (45)

The Euler±Lagrange equations determined by L3 are equations (43) and, when

either hij 5 hji or hij 5 2 hji and hij is nondegenerate, equation (44).

The Lie algebra of & with commutators

[Jij, Jkl] 5
1

2
(hkj Jil 1 hli Jjk 1 hki Jlj 1 hlj Jki) (46)

can be extended to a semi-direct sum with two Abelian Lie algebras whose

generators are, respectively, ai and bi. The semi-direct sum is defined by

the commutators

[ai , Jjk] 5 2
1

2
hikaj 2

1

2
s hijak (47a)

and

[bi , Jjk] 5 2
1

2
hikbj 2

1

2
s hijbk (47b)

where s 5 1 1 when hij 5 2 hji and s 5 2 1 when hij 5 hji.

Introducing Lie algebra-valued forms defined as u 5 a iai 1 b ibi , G 5
s G i

j J
j
i, U 5 d u 1 [ u , G ] 5 m iai 2 n ibi , and S 5 a i Ù b jJij enables the field

equations (43)±(44) to be written in the same concise form as Einstein’ s

vacuum equations, that is,

D ( U 1 S ) 5 0 (48)

5. DISCUSSION

It has been shown that Einstein’ s vacuum field equations can be given

Lagrangian formulations which place them naturally in a class of more general
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gauge theories. The semi-direct sum structures of the Lie algebras considered

above suggest the consideration of two connection 1-forms A1 and A2 with

matrix representations

A1 5 1 G
i
j a i

0 0 2 and A2 5 1 G i
j 0

b ihji 0 2 (49)

and curvatures F1 and F2, respectively. Then the Lagrangian 4-form Tr(F1 Ù
F2) is equal to D a i Ù D b jhij 1 F i

j Ù F j
i. This differs from the generalized

Tung±Jacobson Lagrangian (45) by the exterior derivative of the Chern±

Simons 3-form. Thus this Lagrangian, which depends only on two connec-

tions, gives the same field equations as L3 (and L2). In the special case where

the gauge group is SL(2, C ), the Einstein vacuum equations are therefore
formulated in terms of a two-connection Lagrangian (Barbero, 1994).

The Lagrangians for Einstein’ s vacuum equations presented in earlier

sections use the anti-self-dual spin connection and are overtly invariant under

anti-self-dual SL(2, C ) gauge transformations. The self-dual spin connection

and gauge transformations could equally well have been used. In the real

Lorentzian case, for example, taking the complex conjugate effects this
change. However, it is the case that the Lagrangians for the self-dual formal-

isms can be expressed directly in terms of the geometrical objects and gauge

transformations introduced earlier. This is most simply demonstrated by intro-

ducing a chiral four-spinor notation in which the components of the chiral

four-spinor-valued 1-form ( a A, b A) and the matrix-valued connection forms

F v A
B 0

0 v A
B G and F p 11 p 21

p 31 2 p 11 G (50)

are respectively denoted by x i, G i
j, A i

j. Here 0 and 1 denote the zero and unit

2 3 2 matrices, and Latin indices range over 1 to 4. Using this notation, we
find that the vacuum equations represented by equations (2) and (7) and

equation (3) are equivalent to the equations

d x i 5 x j Ù G i
j 1 x j Ù A i

j (51)

and

x j Ù (dA i
j 1 A i

k Ù A k
j ) 5 x j Ù (d G i

j 1 G i
k Ù G k

j ) 5 0 (52)

The metric given by equation (6) takes the form

ds2 5 gij x i ^ x j (53)
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where

gij 5 F 0 e AB

2 e AB 0 G (54)

and G ij 5 2 G ji, A ij 5 2 A ji.

As an illustration, consider the Lagrangian of Tung and Jacobson given

in equation (5). It can now be written as

L1 5
1

2
D x i Ù D x i (55)

where D is the covariant exterior derivative determined by G i
j. The Lagrangian

L1 is invariant under SL(2, C ) 3 SL(2, C ) transformations, where SL(2, C )

is the gauge group of anti-self-dual transformations. The Lagrangian

L4 5
1

2
¹ x i Ù ¹ x i (56)

is also a Lagrangian for the vacuum equations, but now the exterior covariant

derivative ¹ is determined by (the self-dual) A i
j and the gauge group corres-

ponds to the self-dual SL(2, C ) transformations as in equation (36).
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